

Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ОПТИКИ АТМОСФЕРЫ им. В.Е. ЗУЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

Двадцатая международная конференция «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА (Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов)»

Валидация алгоритма восстановления коэффициентов отражения земной поверхности из данных MODIS, учитывающего влияние неоднородности земной поверхности

Тарасенков М.В., Энгель М.В., Белов В.В., Зимовая А.В., Богданова А.С.

14 - 18 ноября 2022 г., Москва

Введение

Алгоритмы восстановления коэффициентов отражения земной поверхности по данным спутниковых измерений развиваются более 50 лет, начиная с таких работ как [1]. К настоящему моменту существуют десятки вариантов решения этой проблемы. Алгоритмы, в которых основой является решение уравнение переноса излучения, называют RTM-алгоритмами. Между собой различаются по учету/не учету факторов: 1) неламбертовость ОНИ поверхности, 2) боковой подсвет, 3) многократное отражение, 4) поглощение, 5) поляризация излучения, 6) рельеф поверхности. В работе [2] нами был предложен алгоритм восстановления коэффициентов отражения земной поверхности, который позволяет точно учесть боковой подсвет, многократное отражение, поглощение и поляризацию излучения. В данной работе рассмотрена валидация предложенного алгоритма по данным MODIS с наземными измерениями участка Португалии, полученными в работе [3].

1. *Otterman J., Fraser R.S.* Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith // Applied optics. 1979. V. 18. No. 16. P. 2852-2860

2. *Тарасенков М. В., Зимовая А. В., Белов В. В., Энгель М. В.* Восстановление коэффициентов отражения земной поверхности по спутниковым измерениям MODIS с учетом поляризации излучения // Оптика атмосферы и океана. 2019. Т. 32. № 08. С. 641–649.

3. *Cerasoli S., Campagnolo M., Faria J., Nogueira C., Calreira M.C.* Hyperspectral Reflectance in Grassland Plots Undergoing Different Fertilization Regimes in Central Portugal from March to June 2016. 2018. PANGAEA

Алгоритм восстановления коэффициентов

отражения

Для получения результатов выполняются следующие действия:

1. Формирование блока исходных данных. Исходными данными являются: интенсивности принятого в канале MODIS излучения ($I_{sum,ij}$; *i* – номер строки пикселя, *j* – номер столбца пикселя); аэрозольные оптические толщины (AOT) атмосферы; вертикальный профиль температуры (T(z)) и давления (P(z)); маска облачности (n_{ij}); информация о взаимном положении наблюдаемых пикселей, Солнца и спутника (координаты пикселя ($\varphi_{N,ij}, \lambda_{N,ij}$), направление на Солнце ($\theta_{sun.ij}, A_{sun.ij}$), направление на спутник ($\theta_{d.ij}, A_{d.ij}$)). Источниками этих данных являются тематические продукты MODIS: MOD021, MOD03, MOD07, MOD35.

2. Построение модели атмосферы. Коэффициенты молекулярного и аэрозольного рассеяния и ослабления строились с помощью разработанной программы по спутниковым измерениям MOD08 – данных спутниковых измерений параметров атмосферы средних за день с шагом 1 градус по координатам.

3. Расчет площадей пикселей снимка S_{ij}. Рассматриваемый снимок разбивался на участки по близости к центрам пикселей.

4. Расчет интенсивности излучения *I*_{sun,ij}, не взаимодействовавшего с земной поверхностью с учетом поляризации излучения.

5. Определение количества l и границ θ_l изопланарных зон (зон, где можно использовать одну ФРТ канала формирования бокового подсвета [1]).

6. Расчет прямого пропускания трассы наблюдаемый пиксель – приемная система τ_{ij} .

7. Расчет радиусов бокового подсвета для изопланарных зон *R*_l.

8. Расчет ФРТ канала формирования бокового подсвета для каждой изопланарной зоны $h(\theta_l, r_w, \varphi_w)$ и ее интеграла по поверхности $H(\theta_l)$.

9. Оценка количества пикселей снимка (по строкам Nx_{ij} и столбцам снимка Ny_{ij}) в пределах области формирования бокового подсвета R_l для каждого пикселя.

10. Решение системы линейных алгебраических уравнений относительно светимости наблюдаемых пикселей Q_{ij} .

1. *Тарасенков М. В., Зимовая А. В., Белов В. В., Энгель М. В.* Восстановление коэффициентов отражения земной поверхности по спутниковым измерениям MODIS с учетом поляризации излучения // Оптика атмосферы и океана. 2019. Т. 32. № 08. С. 641–649.

Расчет освещенности земной поверхности без учета отраженного излучения E₀.
 Расчет радиусов формирования дополнительной освещенности земной поверхности R пикселями поверхности.

13. Расчет ФРТ канала формирования дополнительной освещенности земной поверхности $h_I(r_w)$ и ее интеграла γ_I . Построение аппроксимации функции $h_I(r_w)$. 14. Оценка количества пикселей снимка (по строкам Mx_{ij} и столбцам снимка My_{ij}) в пределах области формирования дополнительной освещенности земной поверхности R для каждого пикселя.

15. Решение системы нелинейных уравнений относительно коэффициента отражения земной поверхности *r_{surf,ij}*.

Для реализации алгоритма были созданы 8 программ метода Монте-Карло для определения величин: S_{ij} , $I_{sun,ij}$, l, $h(\theta_l, r_w, \varphi_w)$, $H(\theta_l)$, E_0 , $h_1(r_w)$, γ_1 [1].

Тарасенков М. В., Зимовая А. В., Белов В. В., Энгель М. В. Восстановление коэффициентов отражения земной поверхности по спутниковым измерениям MODIS с учетом поляризации излучения // Оптика атмосферы и океана. 2019. Т. 32. № 08. С. 641–649.

Валидация алгоритма по наземным измерениям

В 2016 г. в точке с координатами 38.829° с.ш. 8.791° з.д. авторы работы [1] проводили серию наземных измерений коэффициентов отражения. За основу были взяты данные наземных измерений за 20.05.2016 г. Это гиперспектральные измерения с шагом в 0.001 мкм. Данные сопоставлялись с результатами для 4 каналов MODIS (центры каналов λ =0.645, 0.858, 0.469 и 0.555 мкм), полученными предлагаемым алгоритмом, данными MOD09 и результатами, полученными без выполнения атмосферной коррекции по формуле:

$$r_{surf,no\ cor,ij} = \frac{\pi I_{sum,ij}}{\pi S_{\lambda} \mu_{sun,ij}} \qquad \mu_{sun} = \cos \theta_{sun}$$

где πS_{λ} — солнечная постоянная.

Результаты восстановления коэффициентов отражения для тестовой точки приведены на рисунке. Для наземных измерений отложены коэффициенты отражения средние по рассматриваемым 24 точкам и их СКО. Сравнение данных на рисунке показывает, что результаты без атмосферной коррекции (символы 4 на рисунке 2) для каналов №3 и 4 значительно отличаются от наземных измерений и от результатов алгоритмов атмосферной коррекции. В канале №2 для рассматриваемой ситуации результаты без атмосферной коррекции отличаются от результатов алгоритмов атмосферной коррекции незначительно. Также из рисунка следует, что результаты, полученные предлагаемым алгоритмом и алгоритмом МОD09 лежат в пределах СКО от средних значений наземных измерений. Для каналов №1 и №2 результаты, полученные этими алгоритмами для тестовой точки отличаются незначительно.

1. *Cerasoli S., Campagnolo M., Faria J., Nogueira C., Calreira M.C.* Hyperspectral Reflectance in Grassland Plots Undergoing Different Fertilization Regimes in Central Portugal from March to June 2016. 2018. PANGAEA

0,25

Результаты валидации предлагаемого алгоритма

№ канала MODIS	Отличие от средних наземных			Отличие результатов МОD09 и		
				предла асмото алгоритма		
	Без коррекции	MOD09	предлагаемый	Коэффициент корреляции	Максимальное абсолютное отличие	Среднее абсолютное отличие
1	0,0746	0,0055	0,0014	0,998	0,024	0,003
2	0,0209	0,0011	0,0062	1,000	0,021	0,003
3	0,0114	0,0011	0,0004	0,991	0,048	0,004
4	0,0502	0,0465	0,0492	0,997	0,024	0,003

Заключение

1. Выполненная валидация алгоритма подтверждает необходимость выполнения атмосферной коррекции спутниковых данных при восстановлении коэффициентов отражения.

2. Сопоставление наземных измерений для участка с координатами 38.829° с.ш. 8.791° з.д. с данными MOD09 и предлагаемого алгоритма показывает, что полученные результаты лежат в пределах СКО от средних по участку наземных измерений. 3. Для каналов №1 и 2 MODIS результаты алгоритмов для тестовой точки отличаются незначительно. Для канала №3 результаты предлагаемого алгоритма ближе к среднему по наземным измерениям значению, чем MOD09, а для канала №4 – результаты MOD09 ближе к среднему значению.

4. Анализ результатов, полученных алгоритмами для участка снимка с координатами 38.4-39.3° с.ш., 8.3-9.2° з.д. показывает, что для каналов №1 и 2 алгоритм МОD09 для некоторых участков, покрытых водой, дает отрицательные коэффициенты отражения.
5. Выполненная валидация показывает предпочтительность использования предлагаемого алгоритма для восстановления коэффициентов отражения территорий, покрытых растительностью в период вегетации.

Работа выполнена в рамках государственного задания ИОА СО РАН с использованием данных станции приема спутниковой информации ЦКП "Атмосфера".

Спасибо за внимание!

Вопросы, возникшие вне сроков проведения конференции, можно направить на e-mail: TMV@iao.ru

